181 research outputs found

    Structural mapping in statistical word problems: A relational reasoning approach to Bayesian inference

    Get PDF
    Presenting natural frequencies facilitates Bayesian inferences relative to using percentages. Nevertheless, many people, including highly educated and skilled reasoners, still fail to provide Bayesian responses to these computationally simple problems. We show that the complexity of relational reasoning (e.g., the structural mapping between the presented and requested relations) can help explain the remaining difficulties. With a non-Bayesian inference that required identical arithmetic but afforded a more direct structural mapping, performance was universally high. Furthermore, reducing the relational demands of the task through questions that directed reasoners to use the presented statistics, as compared with questions that prompted the representation of a second, similar sample, also significantly improved reasoning. Distinct error patterns were also observed between these presented- and similar-sample scenarios, which suggested differences in relational-reasoning strategies. On the other hand, while higher numeracy was associated with better Bayesian reasoning, higher-numerate reasoners were not immune to the relational complexity of the task. Together, these findings validate the relational-reasoning view of Bayesian problem solving and highlight the importance of considering not only the presented task structure, but also the complexity of the structural alignment between the presented and requested relations

    Tensors and compositionality in neural systems

    Get PDF
    Neither neurobiological nor process models of meaning composition specify the operator through which constituent parts are bound together into compositional structures. In this paper, we argue that a neurophysiological computation system cannot achieve the compositionality exhibited in human thought and language if it were to rely on a multiplicative operator to perform binding, as the tensor product (TP)-based systems that have been widely adopted in cognitive science, neuroscience and artificial intelligence do. We show via simulation and two behavioural experiments that TPs violate variable-value independence, but human behaviour does not. Specifically, TPs fail to capture that in the statements fuzzy cactus and fuzzy penguin, both cactus and penguin are predicated by fuzzy(x) and belong to the set of fuzzy things, rendering these arguments similar to each other. Consistent with that thesis, people judged arguments that shared the same role to be similar, even when those arguments themselves (e.g., cacti and penguins) were judged to be dissimilar when in isolation. By contrast, the similarity of the TPs representing fuzzy(cactus) and fuzzy(penguin) was determined by the similarity of the arguments, which in this case approaches zero. Based on these results, we argue that neural systems that use TPs for binding cannot approximate how the human mind and brain represent compositional information during processing. We describe a contrasting binding mechanism that any physiological or artificial neural system could use to maintain independence between a role and its argument, a prerequisite for compositionality and, thus, for instantiating the expressive power of human thought and language in a neural system

    Thinking through time: From collective memories to collective futures

    Get PDF
    In this chapter I look at the links between collective memory and the imagination of collective futures. Drawing on works on imagination and autobiographical memory, I first discuss the role of past experiences in imagining the future. I then explore the consequences of such a perspective for collective memories and collective futures, which will lead me to argue that the former provides the basis for the latter. Three case studies are presented, each illustrating a different type of relation between collective memory and collective imagination: 1) collective memory as a frame of reference to imagine the future; 2) collective memory as a source of experiences and examples to imagine what is likely, possible or desirable; and 3) collective memory as generalisable experience from which representations of the world – Personal World Philosophies – are constructed and in turn used to imagine the collective future. This will lead me to the conclusion that representations of the world are characterised by “temporal heteroglossia”, the simultaneous presence of multiple periods of time, and that they mediate the relation between collective memory and collective imagination, allowing us to “think through time”

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    From reading numbers to seeing ratios: a benefit of icons for risk comprehension

    Get PDF
    Promoting a better understanding of statistical data is becoming increasingly important for improving risk comprehension and decision-making. In this regard, previous studies on Bayesian problem solving have shown that iconic representations help infer frequencies in sets and subsets. Nevertheless, the mechanisms by which icons enhance performance remain unclear. Here, we tested the hypothesis that the benefit offered by icon arrays lies in a better alignment between presented and requested relationships, which should facilitate the comprehension of the requested ratio beyond the represented quantities. To this end, we analyzed individual risk estimates based on data presented either in standard verbal presentations (percentages and natural frequency formats) or as icon arrays. Compared to the other formats, icons led to estimates that were more accurate, and importantly, promoted the use of equivalent expressions for the requested probability. Furthermore, whereas the accuracy of the estimates based on verbal formats depended on their alignment with the text, all the estimates based on icons were equally accurate. Therefore, these results support the proposal that icons enhance the comprehension of the ratio and its mapping onto the requested probability and point to relational misalignment as potential interference for text-based Bayesian reasoning. The present findings also argue against an intrinsic difficulty with understanding single-event probabilities

    Becoming original: effects of strategy instruction

    Get PDF
    Visual arts education focuses on creating original visual art products. A means to improve originality is enhancement of divergent thinking, indicated by fluency, flexibility and originality of ideas. In regular arts lessons, divergent thinking is mostly promoted through brainstorming. In a previous study, we found positive effects of an explicit instruction of metacognition on fluency and flexibility in terms of the generation of ideas, but not on the originality of ideas. Therefore, we redesigned the instruction with a focus on building up knowledge about creative generation strategies by adding more complex types of association, and adding generation through combination and abstraction. In the present study, we examined the effects of this intervention by comparing it with regular brainstorming instruction. In a pretest-posttest control group design, secondary school students in the comparison condition received the brainstorm lesson and students in the experimental condition received the newly developed instruction lesson. To validate the effects, we replicated this study with a second cohort. The results showed that in both cohorts the strategy instruction of 50 min had positive effects on students' fluency, flexibility and originality. This study implies that instructional support in building up knowledge about creative generation strategies may improve students' creative processes in visual arts education
    corecore